ProGP206 (Flagellin (FlaA))

Home -> ProGPdb -> Search ProGP -> Display data

ProGP ID ProGP206 (Flagellin (FlaA))
Validation Status Characterized
Organism Information
Organism NameCampylobacter jejuni subsp. jejuni 81-176
Domain Bacteria
Classification Phylum : Proteobacteria
Class : Epsiolonproteobacteria
Orders : Campylobacterales
Family : Campylobacteraceae
Species : jejuni
Subspecies : jejuni
Strain : 81-176
Taxonomic ID (NCBI) 354242
Genome Information
GenBank CP000538.1
EMBL CP000538
Organism Additional Information Campylobacter jejuni is a microaerophilic, Gram-negative, human pathogen that is the major cause of bacterial food-borne diarrhoea (gastroenteritis). It is most frequently responsible for a form of post-infection neuromuscular paralysis known as Guillain Barre' syndrome. It also leads to an immunoproliferative small intestine disease that is a rare malignant lymphoma of the intestine. Motility is essential for pathogenicity.
Gene Information
Gene NameflaA (CJJ81176_1339)
NCBI Gene ID 4682159
GenBank Gene Sequence NC_008787.1
Protein Information
Protein NameFlagellin (FlaA)
UniProtKB/SwissProt ID Q2M5R2
NCBI RefSeq WP_011812789.1
EMBL-CDSEAQ72691.1
UniProtKB Sequence >tr|Q2M5R2|Q2M5R2_CAMJJ FlaA OS=Campylobacter jejuni subsp. jejuni serotype O:23/36 (strain 81-176) GN=flaA PE=4 SV=1 MGFRINTNVAALNAKANSDLNAKSLDASLSRLSSGLRINSAADDASGMAIADSLRSQANT LGQAISNGNDALGILQTADKAMDEQLKILDTIKTKATQAAQDGQSLKTRTMLQADINKLM EELDNIANTTSFNGKQLLSGNFTNQEFQIGASSNQTVKATIGATQSSKIGVTRFETGAQS FTSGVVGLTIKNYNGIEDFKFDNVVISTSVGTGLGALAEEINKSADKTGVRATYDVKTTG VYAIKEGTTSQEFAINGVTIGKIEYKDGDGNGSLISAINAVKDTTGVQASKDENGKLVLT SADGRGIKITGDIGVGSGILANQKENYGRLSLVKNDGRDINISGTNLSAIGMGTTDMISQ SSVSLRESKGQISATNADAMGFNSYKGGGKFVFTQNVSSISAFMSAQGSGFSRGSGFSVG SGKNLSVGLSQGIQIISSAASMSNTYVVSAGSGFSSGSGNSQFAALKTTAANTTDETAGV TTLKGAMAVMDIAETAITNLDQIRADIGSIQNQVTSTINNITVTQVNVKAAESQIRDVDF ASESANYSKANILAQSGSYAMAQANSSQQNVLRLLQ
Sequence length 576 AA
Subcellular LocationSecreted
Function It is the subunit protein which is polymerized into the flagellar filaments. Motility mediated by flagella is essential for virulence.
Glycosylation Status
Glycosylation Type O- (Ser) linked
Experimentally Validated Glycosite(s) in Full Length ProteinS207, S343, S348, T394, S398, S401, S405, S409, S418, S426, S430, S437, S441, S449, S452, S455, S458, S461, T482
Experimentally Validated Glycosite(s ) in Mature ProteinS206, S342, S347, T393, S397, S400, S404, S408, S417, S425, S429, S436, S440, S448, S451, S454, S457, S460, T481
Glycosite(s) Annotated Protein Sequence >tr|Q2M5R2|Q2M5R2_CAMJJ FlaA OS=Campylobacter jejuni subsp. jejuni serotype O:23/36 (strain 81-176) GN=flaA PE=4 SV=1 MGFRINTNVAALNAKANSDLNAKSLDASLSRLSSGLRINSAADDASGMAIADSLRSQANT LGQAISNGNDALGILQTADKAMDEQLKILDTIKTKATQAAQDGQSLKTRTMLQADINKLM EELDNIANTTSFNGKQLLSGNFTNQEFQIGASSNQTVKATIGATQSSKIGVTRFETGAQS FTSGVVGLTIKNYNGIEDFKFDNVVIS*(207)TSVGTGLGALAEEINKSADKTGVRATYDVKTTG VYAIKEGTTSQEFAINGVTIGKIEYKDGDGNGSLISAINAVKDTTGVQASKDENGKLVLT SADGRGIKITGDIGVGSGILANQKENYGRLSLVKNDGRDINIS*(343)GTNLS*(348)AIGMGTTDMISQ SSVSLRESKGQISATNADAMGFNSYKGGGKFVFT*(394)QNVS*(398)SIS*(401)AFMS*(405)AQGS*(409)GFSRGSGFS*(418)VGSGKNLS*(426)VGLS*(430) QGIQIIS*(437)SAAS*(441) MSNTYVVS*(449)AGS*(452) GFS*(455)SGS*(458) GNS*(461)QFAALKTTAANTTDETAGVTT*(482)LKGAMAVMDIAETAITNLDQIRADIGSIQNQVTSTINNITVTQVNVKAAESQIRDVDFASESANYSKANILAQSGSYAMAQANSSQQNVLRLLQ
Sequence Around Glycosites (21 AA) EDFKFDNVVISTSVGTGLGAL
VKNDGRDINISGTNLSAIGMG
RDINISGTNLSAIGMGTTDMI
SYKGGGKFVFTQNVSSISAFM
GGKFVFTQNVSSISAFMSAQG
FVFTQNVSSISAFMSAQGSGF
QNVSSISAFMSAQGSGFSRGS
SISAFMSAQGSGFSRGSGFSV
GSGFSRGSGFSVGSGKNLSVG
GFSVGSGKNLSVGLSQGIQII
GSGKNLSVGLSQGIQIISSAA
VGLSQGIQIISSAASMSNTYV
QGIQIISSAASMSNTYVVSAG
AASMSNTYVVSAGSGFSSGSG
MSNTYVVSAGSGFSSGSGNSQ
TYVVSAGSGFSSGSGNSQFAA
VSAGSGFSSGSGNSQFAALKT
GSGFSSGSGNSQFAALKTTAA
NTTDETAGVTTLKGAMAVMDI
ProGP Web Logo
Technique(s) used for Glycosylation DetectionESMS (electrospray mass spectrometry); 10%- 6.5 kDa- mass excess detected
Technique(s) used for Glycosylated Residue(s) Detection A combination of LC-ESMS (liquid chromatography-electrospray mass spectrometry) and MS-MS (tandem mass spectrometry) analyses; 10 out of 19 glycosylation sites were defined using nano-ESMS after base (NH4OH)-catalyzed β-elimination.
Protein Glycosylation- Implication Glycosylation is required for flagellar filament formation. Certain glycans mediate filament-filament interactions resulting in AAG (autoagglutination) and other glycans appear to be critical for structural subunit-subunit interactions within the filament. Modification with pseudaminic acid and derivatives is essential for targeting and/or secretion of flagellin. Also, specific structural modifications to the flagellin glycoform have been shown to be involved in the biological fitness of C. jejuni in colonization of chickens.
Glycan Information
Glycan Annotation Glycan represents 10% of the total mass of the protein.
Major glycan is pseudaminic acid and its derivatives, Pse5Pr7Pr, Pse5Ac7Ac8OAc, Pse5Am7Ac.
Pse5Ac7Ac (5,7-diacetamido-3,5,7,9 - tetradeoxy-L-glycero-L-manno- nonulosonic acid), with 5-acetamidino pseudaminic acid (Pse5Am7Ac) and 5,7-N-(2,3-dihydroxyproprionyl)-pseudaminic acid (Pse5Pr7Pr) are also present. In addition, novel glycans, Pse5Am7Ac8GlnAc and Pse5Ac7Ac8OAc, have also been found. S398 and S405 carry Pse5Pr7Pr moiety while T394, S401 and S409 are modified with Pse5Ac7Ac residues. Pse5Ac7Ac is also written as Pse5NAc7NAc (Pse). Microheterogeneity in glycosylation has been observed.
Technique(s) used for Glycan Identification Nano-ESMS and NMR analysis of HPLC fractions of trypsin digested glycopeptides including COSY(correlated spectroscopy) and NOESY (nuclear Overhauser effect spectroscopy).
Protein Glycosylation linked (PGL) gene(s)
OST ProGT IDProGT18 (PseD)
Literature
ReferenceMaita, N., Nyirenda, J., Igura, M., Kamishikiryo, J. and Kohda, D., 2010. Comparative Structural Biology of Eubacterial and Archaeal Oligosaccharyltransferases 2. Journal of Biological Chemistry, 285(7), pp.4941-4950.
Corresponding Author Daisuke Kohda
ContactDivision of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan.
ReferenceEwing, C.P., Andreishcheva, E. and Guerry, P., 2009. Functional characterization of flagellin glycosylation in Campylobacter jejuni 81-176. Journal of bacteriology, 191(22), pp.7086-7093.
Corresponding Author Patricia Guerry
ContactNRC-Institute for Biological Sciences, Ottawa, Canada.
ReferenceMcNally, D.J., Hui, J.P., Aubry, A.J., Mui, K.K., Guerry, P., Brisson, J.R., Logan, S.M. and Soo, E.C., 2006. Functional characterization of the flagellar glycosylation locus in Campylobacter jejuni 81–176 using a focused metabolomics approach. Journal of Biological Chemistry, 281(27), pp.18489-18498.
Corresponding Author Evelyn C. Soo
ContactNational Research Council, Institute for Biological Sciences, Ottawa, Ontario K1A 0R6, Canada.
ReferenceGoon, S., Kelly, J.F., Logan, S.M., Ewing, C.P. and Guerry, P., 2003. Pseudaminic acid, the major modification on Campylobacter flagellin, is synthesized via the Cj1293 gene. Molecular microbiology, 50(2), pp.659-671.
Corresponding Author Patricia Guerry
ContactNRC-Institute for Biological Sciences, Ottawa, Canada.
ReferenceLogan, S.M., Kelly, J.F., Thibault, P., Ewing, C.P. and Guerry, P., 2002. Structural heterogeneity of carbohydrate modifications affects serospecificity of Campylobacter flagellins. Molecular microbiology, 46(2), pp.587-597.
Corresponding Author Patricia Guerry
ContactNRC-Institute for Biological Sciences, Ottawa, Canada.
ReferenceThibault, P., Logan, S.M., Kelly, J.F., Brisson, J.R., Ewing, C.P. and Guerry, P., 2001. Identification of the carbohydrate moieties and glycosylation motifs in Campylobacter jejuni flagellin. Journal of Biological Chemistry, 276(37), pp.34862-34870.
Corresponding Author Susan M Logan
ContactInstitute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada.